3.7 Probability Conservation and the Hermiticity of the Hamiltonian

If the operator \hat{A} satisfy the condition

$$
\int \Psi^{*} \hat{A} \Psi d \mathbf{r}=\int(\hat{A} \Psi)^{*} \Psi d \mathbf{r}
$$ is called Hermitian operator.

We shall now show that the conservation of probability implies that the Hamiltonian operator \mathbf{H} appearing in the Schrödinger equation is Hermitian.

In terms of \mathbf{H}, the Schrödinger equation can be written as

$$
\begin{equation*}
i \hbar \frac{\partial \Psi}{\partial t}=H \Psi \tag{3.30}
\end{equation*}
$$

The complex conjugate of this equation is

$$
\begin{equation*}
-i \hbar \frac{\partial \Psi^{*}}{\partial t}=(H \Psi)^{*} \tag{3.31}
\end{equation*}
$$

Using these equations, we can write

$$
\begin{align*}
\frac{\partial}{\partial t} \int \Psi * \Psi d \mathbf{r} & =\int\left(\Psi * \frac{\partial \Psi}{\partial t}+\Psi \frac{\partial \Psi^{*}}{\partial t}\right) d \mathbf{r} \tag{3.32}\\
& =(i \hbar)^{-1} \int\left[\Psi^{*}(H \Psi)-\Psi(H \Psi)^{*}\right] d \mathbf{r}
\end{align*}
$$

Since the left-hand side is zero, we obtain

$$
\begin{equation*}
\int \Psi^{*}(H \Psi) d \mathbf{r}=\int(H \Psi)^{*} \Psi d \mathbf{r} \tag{3.33}
\end{equation*}
$$

Operators which satisfy this condition are called Hermitian. Thus, H is an Hermitian operator.

3.8 Probability Current Density

From equation (3.28)

$$
\frac{\partial}{\partial t} \int_{V} P(\mathbf{r}, t) d \mathbf{r}=-\int_{V} \boldsymbol{\nabla} \cdot \mathbf{j} d \mathbf{r}
$$

and since this equation is true for any arbitrary volume, we have

$$
\begin{equation*}
\frac{\partial}{\partial t} P(\mathbf{r}, t)+\nabla \cdot \mathbf{j}(\mathbf{r}, t)=0 \tag{3.34}
\end{equation*}
$$

This is called the equation of continuity.
The vector $\boldsymbol{j}(\boldsymbol{r}, t)$ is called the probability current density.
If $\nabla \cdot \boldsymbol{j}=0$, then for that state the probability density is constant in time. Such states are called stationary states.

3.8 Expectation Values of Dynamical Variables

- In quantum mechanics a particle is represented by a wave function which can be obtained by solving the Schrödinger equation and contains all the available information about the particle.
- The dynamical variables of the particle (position, momentum,) can be extracted from the wave function Ψ.
- Since Ψ has a probabilistic interpretation, so that exact information about the variables cannot be obtained.
- We obtain only the expectation value of a quantity, which is the average of a large number of measurements on the same system.
- The expectation value of a physical quantity is always real.

To find the position expectation value $\langle r\rangle$:

Since $P(\mathbf{r}, t)=\Psi^{*}(\mathbf{r}, t) \Psi(\mathbf{r}, t)$ is interpreted as the position probability density at the point \mathbf{r} at the time t, the expectation value of the position vector \mathbf{r} is given by

$$
\begin{align*}
\langle\mathbf{r}\rangle & =\int \mathbf{r} P(\mathbf{r}, t) d \mathbf{r} \tag{3.35}\\
& =\int \Psi^{*}(\mathbf{r}, t) \mathbf{r} \Psi(\mathbf{r}, t) d \mathbf{r} \tag{3.36}
\end{align*}
$$

where $\Psi(\mathbf{r}, t)$ is normalized. This equation is equivalent to the three equations

$$
\begin{align*}
\langle x\rangle & =\int \Psi^{*} x \Psi d \mathbf{r} \\
\langle y\rangle & =\int \Psi^{*} y \Psi d \mathbf{r} \tag{3.37}\\
\langle z\rangle & =\int \Psi^{*} z \Psi d \mathbf{r}
\end{align*}
$$

- The expectation value is a function only of the time because the space coordinates have been integrated out.
- The expectation value of a physical quantity is always real.

The expectation value of any quantity which is a function of \boldsymbol{r} and t would be;

$$
\begin{equation*}
\langle f(\mathbf{r}, t)\rangle=\int \Psi^{*}(\mathbf{r}, t) f(\mathbf{r}, t) \Psi(\mathbf{r}, t) d \mathbf{r} \tag{3.38}
\end{equation*}
$$

As an example, the expectation value of the potential energy is

$$
\begin{equation*}
\langle V(\mathbf{r}, t)\rangle=\int \Psi^{*}(\mathbf{r}, t) V(\mathbf{r}, t) \Psi(\mathbf{r}, t) d \mathbf{r} \tag{3.39}
\end{equation*}
$$

The expectation values for quantities which are functions of momentum or of both position and momentum by using the operator representations

$$
\begin{aligned}
\hat{\mathbf{p}} & =-i \hbar \boldsymbol{\nabla} \\
p^{2} & =-\hbar^{2} \nabla^{2} \\
\hat{E} & =i \hbar \frac{\partial}{\partial t}
\end{aligned}
$$

Q: How these differential operators are to be combined with the position probability density $\Psi^{*} \Psi$ to obtain the total energy expressions?

Answer: by using the classical expression for the total energy

$$
E=\frac{p^{2}}{2 m}+V
$$

And the expectation values;

$$
\begin{equation*}
\langle E\rangle=\left\langle\frac{p^{2}}{2 m}\right\rangle+\langle V\rangle \tag{3.40}
\end{equation*}
$$

Replacing E and p^{2} by the corresponding operators, we get

$$
\begin{equation*}
\left\langle i \hbar \frac{\partial}{\partial t}\right\rangle=\left\langle-\frac{\hbar^{2}}{2 m} \nabla^{2}\right\rangle+\langle V\rangle \tag{3.41}
\end{equation*}
$$

This equation must be consistent with the Schrödinger equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2} \nabla^{2}}{2 m} \Psi+V \Psi
$$

Multiplying by Ψ^{*} on the left and integrating, we get

$$
\begin{equation*}
\int \Psi^{*}\left(i \hbar \frac{\partial}{\partial t}\right) \Psi d \mathbf{r}=\int \Psi^{*}\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) \Psi d \mathbf{r}+\int \Psi * V \Psi d \mathbf{r} \tag{3.42}
\end{equation*}
$$

From (3.40) -(3.42) we have;

$$
\begin{gather*}
\langle V\rangle=\int \Psi^{*} V \Psi d \mathbf{r} \tag{3.43}\\
\langle E\rangle=\int \Psi^{*} i \hbar \frac{\partial \Psi}{\partial t} d \mathbf{r} \tag{3.44}\\
\langle\mathbf{p}\rangle=\int \Psi^{*}(-i \hbar) \nabla \Psi d \mathbf{r} \tag{3.45}
\end{gather*}
$$

The last equation is equivalent to

$$
\begin{align*}
& \left\langle p_{x}\right\rangle=-i \hbar \int \Psi^{*} \frac{\partial \Psi}{\partial x} d \mathbf{r} \\
& \left\langle p_{y}\right\rangle=-i \hbar \int \Psi^{*} \frac{\partial \Psi}{\partial y} d \mathbf{r} \\
& \left\langle p_{z}\right\rangle=-i \hbar \int \Psi^{*} \frac{\partial \Psi}{\partial z} d \mathbf{r} \tag{3.46}
\end{align*}
$$

Generalizing the above results:

$\Psi(\boldsymbol{r}, t)$ The normalized wave function which describes the dynamical state of a particle.
$A(\boldsymbol{r}, \boldsymbol{p}, t)$ the dynamical variable representing a physical quantity associated with the particle.

We calculate the expectation value of A from the expression;

$$
\begin{align*}
& \langle A\rangle=\int \Psi^{*}(\mathbf{r}, t) \hat{A} \Psi(\mathbf{r}, \mathrm{t}) \mathrm{d} \mathbf{r}, \quad \text { or } \\
& \langle A\rangle=\int \Psi^{*}(\mathbf{r}, t) \hat{A}(\mathbf{r},-i \hbar \nabla, t) \Psi(\mathbf{r}, t) d \mathbf{r} \tag{3.46}
\end{align*}
$$

Since the expectation value of a physical quantity is always real, i.e., $\langle A\rangle^{*}=\langle A\rangle$ Then the operator \hat{A} must satisfy;

$$
\begin{equation*}
\int \Psi^{*} \hat{A} \Psi d \mathbf{r}=\int(\hat{A} \Psi)^{*} \Psi d \mathbf{r} \tag{3.47}
\end{equation*}
$$

Thus, the operator associated with a dynamical quantity must be Hermitian.

